Monday, December 3, 2007

Intrusion Detections / Preventions System (IDS/IPS)

Intrusion Detections System
An intrusion detection system (IDS) inspects all inbound and outbound network activity and identifies suspicious patterns that may indicate a network or system attack from someone attempting to break into or compromise a system.

There are several ways to categorize an IDS:
misuse detection vs. anomaly detection: in misuse detection, the IDS analyzes the information it gathers and compares it to large databases of attack signatures. Essentially, the IDS looks for a specific attack that has already been documented. Like a virus detection system, misuse detection software is only as good as the database of attack signatures that it uses to compare packets against. In anomaly detection, the system administrator defines the baseline, or normal, state of the network’s traffic load, breakdown, protocol, and typical packet size. The anomaly detector monitors network segments to compare their state to the normal baseline and look for anomalies.
network-based vs. host-based systems: in a network-based system, or NIDS, the individual packets flowing through a network are analyzed. The NIDS can detect malicious packets that are designed to be overlooked by a firewall’s simplistic filtering rules. In a host-based system, the IDS examines at the activity on each individual computer or host.
passive system vs. reactive system: in a passive system, the IDS detects a potential security breach, logs the information and signals an alert. In a reactive system, the IDS responds to the suspicious activity by logging off a user or by reprogramming the firewall to block network traffic from the suspected malicious source.
Though they both relate to network security, an IDS differs from a firewall in that a firewall looks out for intrusions in order to stop them from happening. The firewall limits the access between networks in order to prevent intrusion and does not signal an attack from inside the network. An IDS evaluates a suspected intrusion once it has taken place and signals an alarm. An IDS also watches for attacks that originate from within a system.

Intrusions Preventions System
An intrusion prevention system is a computer security device that monitors network and/or system activities for malicious or unwanted behavior and can react, in real-time, to block or prevent those activities. Network-based IPS, for example, will operate in-line to monitor all network traffic for malicious code or attacks. When an attack is detected, it can drop the offending packets while still allowing all other traffic to pass. Intrusion prevention technology is considered by some to be an extension of intrusion detection (IDS) technology. The term "Intrusion Prevention System" was coined by Andrew Plato who was a technical writer and consultant for *NetworkICE.
Intrusion prevention systems (IPS) were invented in the late 1990s to resolve ambiguities in passive network monitoring by placing detection systems in-line. A considerable improvement upon firewall technologies, IPS make access control decisions based on application content, rather than IP address or ports as traditional firewalls had done. As IPS systems were originally a literal extension of intrusion detection systems, they continue to be related.

Intrusion prevention systems may also serve secondarily at the host level to deny potentially malicious activity. There are advantages and disadvantages to host-based IPS compared with network-based IPS. In many cases, the technologies are thought to be complementary.
An Intrusion Prevention system must also be a very good Intrusion Detection system to enable a low rate of false positives. Some IPS systems can also prevent yet to be discovered attacks, such as those caused by a Buffer overflow.

How To Deploying Network And Host IP For
Intrusion Preventions Active Response...?
Download From My IDS/IPS E-Book Collections

b:else/>

Intrusion Detections System
An intrusion detection system (IDS) inspects all inbound and outbound network activity and identifies suspicious patterns that may indicate a network or system attack from someone attempting to break into or compromise a system.

There are several ways to categorize an IDS:
misuse detection vs. anomaly detection: in misuse detection, the IDS analyzes the information it gathers and compares it to large databases of attack signatures. Essentially, the IDS looks for a specific attack that has already been documented. Like a virus detection system, misuse detection software is only as good as the database of attack signatures that it uses to compare packets against. In anomaly detection, the system administrator defines the baseline, or normal, state of the network’s traffic load, breakdown, protocol, and typical packet size. The anomaly detector monitors network segments to compare their state to the normal baseline and look for anomalies.
network-based vs. host-based systems: in a network-based system, or NIDS, the individual packets flowing through a network are analyzed. The NIDS can detect malicious packets that are designed to be overlooked by a firewall’s simplistic filtering rules. In a host-based system, the IDS examines at the activity on each individual computer or host.
passive system vs. reactive system: in a passive system, the IDS detects a potential security breach, logs the information and signals an alert. In a reactive system, the IDS responds to the suspicious activity by logging off a user or by reprogramming the firewall to block network traffic from the suspected malicious source.
Though they both relate to network security, an IDS differs from a firewall in that a firewall looks out for intrusions in order to stop them from happening. The firewall limits the access between networks in order to prevent intrusion and does not signal an attack from inside the network. An IDS evaluates a suspected intrusion once it has taken place and signals an alarm. An IDS also watches for attacks that originate from within a system.

Intrusions Preventions System
An intrusion prevention system is a computer security device that monitors network and/or system activities for malicious or unwanted behavior and can react, in real-time, to block or prevent those activities. Network-based IPS, for example, will operate in-line to monitor all network traffic for malicious code or attacks. When an attack is detected, it can drop the offending packets while still allowing all other traffic to pass. Intrusion prevention technology is considered by some to be an extension of intrusion detection (IDS) technology. The term "Intrusion Prevention System" was coined by Andrew Plato who was a technical writer and consultant for *NetworkICE.
Intrusion prevention systems (IPS) were invented in the late 1990s to resolve ambiguities in passive network monitoring by placing detection systems in-line. A considerable improvement upon firewall technologies, IPS make access control decisions based on application content, rather than IP address or ports as traditional firewalls had done. As IPS systems were originally a literal extension of intrusion detection systems, they continue to be related.

Intrusion prevention systems may also serve secondarily at the host level to deny potentially malicious activity. There are advantages and disadvantages to host-based IPS compared with network-based IPS. In many cases, the technologies are thought to be complementary.
An Intrusion Prevention system must also be a very good Intrusion Detection system to enable a low rate of false positives. Some IPS systems can also prevent yet to be discovered attacks, such as those caused by a Buffer overflow.

How To Deploying Network And Host IP For
Intrusion Preventions Active Response...?
Download From My IDS/IPS E-Book Collections

0 comments:

Please enter the IP address you want to lookup below:

  © Blogger templates The Professional Template by Ourblogtemplates.com 2008

Back to TOP